Example Architectures We now have probably four different approaches to defining / illustrating architectures in the examples: - 1) layers of increasing abstraction - 1.1) taxonomy #1 ("Johnston") - 1.2) taxonomy #2 ("Moore-Johnston") - 1.3) taxonomy #3 ("Foster, Kesselman, et al") - 2) building block interactions - 2.1) data architecture –1 (Moore) - 2.2) data architecture 2 (Moore) - 2.3) Aydt - 3) concept space - 3.1) Moore - 4) hybrid of a building blocks and concept space - 4.1) EU Data Grid Arch., Fisher, et al ## **Grid Forum "Interactions"** | GF WG "Levels" | Data | Accounting | Scheduling | Performance | Information
Services | Grid
Computing
Environment | |--------------------------------------|--|----------------------------------|--|-------------------------------------|---------------------------------------|--| | Higher
services | file,
object,
collection
access | accounting interface | scheduler
interface | monitoring
data
consumer | information
discovery | workbench,
portal, PSE | | Management | replica
catalog | user
registration | distributed
scheduler
manager | monitoring
aggregation
server | resource
addition
service | process /
workflow
management | | Persistence, | metadata
catalogue | Grid usage
repository | reservation information | monitor
repository | Grid resource
naming
repository | portal state information | | Resource
Abstraction
Standards | GridFTP,
ODBC, SRB | audit
information
exchange | policy
request
description
exchange | monitor
information
exchange | resource
capability
info. exch. | standard run
environment
interface | | Transport and Security | | | | | SDLIP | | | | GSS, PKI, TLS, TCP/IP | | | | | | | Resource
Interfaces | storage
system
interfaces | usage
tracking
interface | local sched.
intf., policy
intf. | monitor data
producer | info.
repository
interface | local run
environment
interface | Complex services may be difficult to reduce to "basic" protocols" that are useful. People tend not to think in terms of protocols. ### Performance Working Group Architecture Another challenge will be to compare protocols that are being developed to the GPArch and make the assessment as to whether this is a "basic" building block or can it be built on lower level protocols or should it use existing building blocks (e.g. an event service). protocol & data format #### Plus security! Ruth Aydt - GGF1 Performance Working Group # Foster, Kesselman, et al, Architecture | Application | Discipline-Specific Data Grid Applications | | | | | | |--------------|---|--|--|--|--|--| | Collective | Consistency Management Services Usage Accounting Management Services Request Management Planning Services Services | | | | | | | | Replica System Resource Selection Management Monitoring Brokering Services Services Services | | | | | | | | Information Coallocation Services Community Coallocation Services Services Community Authorization Service Service Service Repository | | | | | | | Resource | Storage Compute Network Catalog Code Service Mgmt Mgmt Mgmt Mgmt Reg. Protocol Protocol Protocol Protocol Protocol | | | | | | | Connectivity | Communication, service discovery (DNS), authentication, delegation | | | | | | | Fabric | Storage Compute Networks Catalogs Code Knowledge Systems Repositories Repositories | | | | | | ### **EU Data Grid Architecture**